Empirical estimation of the monthly-mean daily temperature range

نویسنده

  • B. Geerts
چکیده

This is a sequel to a study of the empirical estimation of the annual mean temperature and its range, at any location on land, based on the historical surface climate record. Here the spatial patterns of the daily temperature range (DTR) and its seasonal variation are examined. The DTR is highest in the subtropical deserts and is less at high latitudes, as well as within 30–150 km from an ocean. It is generally higher in winter (summer) at low (high) latitudes. The coastal DTR reduction is explained by sea breezes, onshore advection, and low-level cloud cover. Even large bodies of water, such as Lake Michigan, affect the near-shore DTR. Elevation does not directly affect the DTR, but valleys tend to have a DTR that is 2–6 K larger than adjacent hills or ridges. The main factor affecting the DTR is the afternoon relative humidity, which is dynamically linked to low-level cloud cover. An empirical relationship between DTR and afternoon relative humidity has an uncertainty of about 1.4 K for monthly-mean values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Estimation of Monthly Mean Daily Global Solar Radiation in Tabriz Using Empirical Models and Artificial Neural Networks

Precise knowledge ofthe amount of global solar radiation plays an important role in designing solar energy systems. In this study, by using 22-year meteorologicaldata, 19 empirical models were tested for prediction of the monthly mean daily global solar radiation in Tabriz. In addition, various Artificial Neural Network (ANN) models were designed for comparison with empirical models. For this p...

متن کامل

Estimation of Global Solar Irradiance Using a Novel combination of Ant Colony Optimization and Empirical Models

In this paper, a novel approach for the estimation of global solar irradiance is proposed based on a combination of empirical correlation and ant colony optimization. Empirical correlation has been used to estimate monthly average of daily global solar irradiance on a horizontal surface. The Ant Colony Optimization (ACO) algorithm has been applied as a swarm-intelligence technique to tune the c...

متن کامل

Estimating High Spatial Resolution Air Temperature for Regions with Limited in situ Data Using MODIS Products

The use of land surface temperature and vertical temperature profile data from Moderate Resolution Imaging Spectroradiometer (MODIS), to estimate high spatial resolution daily and monthly maximum and minimum 2 m above ground level (AGL) air temperatures for regions with limited in situ data was investigated. A diurnal air temperature change model was proposed to consider the differences between...

متن کامل

Empirical estimation of the annual range of monthly-mean temperatures

This is a sequel to a study of the empirical estimation of the annual-mean temperature at any location on land, using only geographical information – latitude, elevation, distance from the nearer ocean shore at the same latitude – and coastal sea-surface temperature. Here long-term mean station data and NCAR=NCEP (National Center for Atmospheric Research=National Centers for Environmental Predi...

متن کامل

Solar Radiation Estimation from Rainfall and Temperature Data in Arid and Semi-arid Climates of Iran

Precipitation and air temperature data, only, are often recorded at meteorological stations, with radiation beingmeasured at very few weather stations, especially in developing countries. Therefore there arises a need for suitablemodels to estimate solar radiation for a completion of data sets. This paper is about an evaluation of eight models foran estimation of daily solar radiation (Q) from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002